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This work investigates whether Fourier transform infrared spectroscopy (FTIR), in combination with
multivariate analysis, can distinguish extra virgin olive oils from different producing countries. Duplicate
spectra were collected from 60 oils from four European countries. Two approaches to data analysis
were used as follows: first, the “whole spectrum” method of partial least squares (PLS) followed by
distance-based linear discriminant analysis (LDA) applied to the PLS scores, and second, a genetic
algorithm (GA) for variate selection from the raw data, followed by LDA applied to the selected subset.
The PLS-LDA approach produced a cross-validation success rate of 96%, whereas the GA-LDA
approach achieved a 100% cross-validation success rate, from subsets comprising only eight variates.
Neither the selected variate nor the whole spectrum approach was able to offer insight into the origin
of the discrimination in biochemical terms. However, FTIR analysis is rapid, and this work shows
that it has the required discriminatory power to potentially offer a “black box” method of screening
oils to verify their country of origin.
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INTRODUCTION

Olive oil is produced from the fruit of theOlea europaea
tree, which is cultivated extensively across the Mediterranean
basin. It is known that the composition of olive oils varies with
geographic origin (1,2), due to a number of different factors:
regional differences in climate, soil, and agricultural practice,
as well as the subvariety that is grownsdifferent cultivars tend
to be grown in different countries. However, it is also known
that the major and minor components of olive oil are each
influenced differently by these factors; hence, the overall
relationship between origin and composition is subtle and may
not remain consistent across more than one harvest.

Verifying the declared origin, or determining the origin of
an unidentified olive oil, is, therefore, a challenging problem.
There have been many studies attempting to elucidate the link
between composition and geographic origin using a variety of
analytical techniques, in general coupled with multivariate
analysis. Chromatographic techniques (3) (gas chromatography,
GC; with mass spectrometry, GC-MS; and high-performance
liquid chromatography, HPLC) have been extensively used to
quantify fatty acids (4-6), as well as minor compound classes
such as sterols (7), phenolics (8,9), and hydrocarbons (10,11).
Stefanoudaki et al. (12) used HPLC to obtain triglyceride
composition from two cultivars, each grown in more than one
geographical location; multivariate analysis separated the data
according to cultivar and, within each cultivar, showed grouping

according to region of origin. Bucci et al. (13) were also able
to discriminate between cultivars using fatty acid compositional
data. However, Cinquanta et al. (14) used HPLC to analyze
phenolic compounds in a selection of cultivars and suggested
that ripeness, soil, and climate had a greater influence than
cultivar on the phenolic content.

In recent years, a number of studies have used high-field
nuclear magnetic resonance (NMR) with the aim of distinguish-
ing oils of different origin. Vlahov et al. (15) used carbon-13
NMR spectra to differentiate between monovarietal olive oils
from different regions of Italy; the discrimination was attributed
to differences in fatty acid composition. Similar differentiation
was obtained by Mannina et al. (16), using hydrogen-1 NMR.

Another molecular spectroscopy technique, Fourier transform
infrared (FTIR), has been shown to be useful for the analysis
of olive oils. It has been used to detect adulteration with other
vegetable oils (17-20) and to quantify free fatty acids (21).
However, the compositional variances of interest in these
applications are comparatively large, often manifest in the raw
spectral data. There is no precedent for the use of FTIR
spectroscopy to discriminate between oils on the basis of their
country of origin. The main purpose of the work presented in
this paper is to ascertain whether FTIR, in combination with
multivariate analysis, has the sensitivity needed to detect such
small systematic differences in composition.

The major advantage of FTIR over NMR or the chromato-
graphic approaches is that no complex sample preparation
(extraction, separation, derivatization) is required. The FTIR
analysis described here is relatively fast: the complete protocol

* To whom correspondence should be addressed. E-mail: kate.kemsley@
bbsrc.ac.uk.

6110 J. Agric. Food Chem. 2003, 51, 6110−6115

10.1021/jf030232s CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/12/2003



(comprising acquisition of background and sample spectra,
cleaning the sampling accessory, and acquisition of spectra to
verify cleanliness) takes around 20 min per sample. Provided
it has the required discriminatory power, FTIR potentially offers
a means of rapid screening of olive oils for verifying their
country of origin.

MATERIALS AND METHODS

Samples.Sixty authenticated samples of virgin olive oils, originating
from four European producing countries, were obtained from the
International Olive Oil Council in Madrid.Table 1details the numbers
of samples from each country, along with some additional information
that was available on the cultivars used.

Instrumentation. All spectra were collected on a Spectra-Tech
Applied Systems Inc. (Shelton, CT) MonitIR FTIR spectrometer system,
equipped with a sealed and desiccated interferometer, a room temper-
ature deuterated triglycine sulfate detector, and an attenuated total
reflectance (ATR) accessory, built into one of two dedicated sampling
stations. The ATR crystal was a nominal 11-reflection zinc selenide
crystal mounted in a trough plate. The crystal geometry was 45°
parallelogram with mirrored angled faces.

Spectral Acquisition. Data were acquired in two discrete periods,
each of around 2 weeks duration. In each period, an absorbance
spectrum was collected of each sample, with the order in which samples
were presented to the spectrometer randomized with respect to the
country of origin. Concatenating the data from both acquisition periods
gave a data set of 120 absorbance spectra in total (i.e., duplicate
acquisitions from each of the 60 samples). Because of the random orders
in which samples were analyzed during each period, the elapsed time
between duplicate acquisitions was different for each sample, ranging
between 1 and 24 days (mean interval) 15 days). Before and between
spectral acquisitions, samples were stored in the dark at ambient
temperature. The spectrometer was sited in an air-conditioned room
(21 °C), and samples were allowed to equilibrate to this temperature
immediately before analysis.

To obtain each absorbance spectrum, a background single-beam
spectrum of the clean, dry ATR crystal was first collected. The spectral
range was 800-4000 cm-1, the nominal resolution was 4 cm-1, and
256 interferograms were coadded before Fourier transformation using
triangular apodization. Immediately following collection of each
background, approximately 5 mL of sample was applied to the ATR
crystal using a transfer pipet, ensuring that no air bubbles were trapped

on the crystal surface. A single-beam spectrum of the sample was
collected with the same acquisition conditions and converted to an
absorbance spectrum using the background.

The ATR plate was cleaned in situ by scrubbing with 0.2% Triton-X
100 solution followed by ethanol and allowed to dry. Cleanliness was
verified by collecting an absorbance spectrum of the crystal, using the
most recently collected background as a reference. The cleaning
procedure was repeated as necessary until this absorbance spectrum
was found to contain substantially only noise, at which point the crystal
was deemed to be clean and ready to acquire a new background to be
used for the subsequent sample.

Chemometric Analysis. All data analysis was carried out using
Matlab (The Mathworks Inc., Cambridge, U.K.). All absorbance spectra
were truncated to 570 data points in the “fingerprint” region, 799-
1897 cm-1, to give a data matrix of dimensions [120× 570] for
analysis.

A selection of multivariate modeling methods was applied to the
data, with the aim of discriminating between the four different countries
of origin. The first of these comprised the “whole spectrum” method
of partial least squares (PLS) followed by distance-based linear
discriminant analysis (LDA) using the Mahalanobis metric (PLS-LDA,
as described in Al-Jowder et al. (22)). The PLS regression step, onto
a set of dummy variates encoded to represent the four groups of
samples, compresses the original data into a smaller number of “scores”,
while tailoring them to the subsequent LDA step. A range of subsets
comprising different numbers of PLS scores are then passed to the LDA,
to obtain a classification model. To ensure a realistic impression of
model performance, internal cross-validation was used throughout, using
a cross-validation segment size of two, corresponding to the duplicate
spectra from each sample (for any given model dimensionality, the
routine was repeated 120/2) 60 times, with each pair of spectra acting
as the test items in turn; this approach to cross-validation has been
used throughout the work in this paper). Classification success rates
were evaluated for the test items only. The optimum model dimen-
sionality was identified as that with the maximum classification success
rate by cross-validation. This model was approximated graphically by
a similarly cross-validated canonical variate analysis (CVA,23) applied
to PLS scores of the optimal subset size.

The second approach to data analysis comprised variate selection,
to identify a low-dimensional subset of raw variates to pass to the cross-
validated LDA routine. Variate selection algorithms have long been
used as precursors to multivariate analysis of spectroscopic data, in
particular before the advent of whole spectrum chemometric methods.
A difficulty is that the total number of variatesd to choose from is
very large: d ) 570 in the present work; hence, the number of possible
subsets of sizer is astronomical (withr ) 8, say,dCr ) d!/(r!(d - r)!)
∼ 2.6 × 1017). However, in recent years, attention has turned back to
variate selection approaches, and some studies have shown that they
offer better performance than whole spectrum methods (24,25). Genetic
algorithms (GAs) have been found to be effective at selecting variables
from high-dimensional data sets (26-28). In the present work, we have
written a GA to search for a small subset of variates to pass to cross-
validated LDA. The criterion for termination of GA evolution was either
attainment of a 100% classification success rate or no further improve-
ment in success rate for 10 generations. The complete routine was
carried out repeatedly, because the random nature of the initial
“chromosomes” (variate identifiers), as well as the possibility of
convergence on local optima, can affect the outcome of any single GA
evolution. The best solution from each execution of the GA was
retained. The frequency of occurrence of each variate calculated across
all retained solutions was interpreted as an indication of its usefulness
as a discriminator.

RESULTS AND DISCUSSION

All 120 spectra are shown inFigure 1a. Spectral quality is
high; instrumental (detector) noise is not visible on the baseline,
and the amount of baseline shift does not indicate baseline
correction to be essential. However, with regard to differentiating
between sample types, it is immediately clear that little can be
gained from examining the raw spectral data, which appear

Table 1. Numbers of Extra Virgin Olive Oils from Each Country of
Each Origin, along with Cultivar Information

group
designation

country
of origin

no. of
samples variety or varieties

1 Greece 10 Koroneiki
2 Italy 17 Coratina (× 2)

Coratina−Ogliarola blend (× 7)
Coratina−Ogliarola−Garganica blend
Leccino−Ogliarola−Garganica blend
Frantoio−Ogliarola−Garganica blend
Ogliarola−Garganica blend
Ogliarola−Salentina blend (× 4)

3 Portugal 8 Cobrancosa
Galega
Cobrancosa−Galega blend
Cobrancosa−Picual−Blanqueta blend
Picual
Arbequina
Cordovil−Galega−Verdeal blend
Macanilha−Carrasquenha−Almendralejo

blend
4 Spain 25 Hojiblanca (× 14)

Arbequina (× 2)
Cornicabra
unspecified blend (× 8)

total: 60
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virtually indistinguishable. The spectra are dominated by
absorptions arising from triglycerides, which form the major
component of olive (and other vegetable) oils. In the presence
of these strong absorptions, it is very difficult to see more subtle
spectral contributions arising from, for example, differences in
the fatty acid composition or from the nonglyceridic minor
components.

Figure 1b-e shows the “centered” data (obtained by
subtracting the mean of all 120 spectra from each individual

spectrum) grouped according to sample origin. It is immediately
clear that there are systematic spectral features present, indicat-
ing that FTIR is indeed sensitive to compositional differences
between extra virgin olive oils. Instrumental noise is present
across the whole frequency range; however, its magnitude
(which can be estimated from the region of substantially no
absorbance, 1800-1896 cm-1) is in comparison small. Note
the large difference between the absorbance unit scales for the
raw and centered data (Figure 1acf. Figure 1b-e). The most
prominent features in the centered data are∼4% of the size of
the largest bands in the raw spectra. The multivariate modeling
to follow will investigate whether the information present in
these features is sufficient to distinguish systematically between
the groups of centered data.

The centered data are essentially difference spectra. Some
of the features may arise from variations in the relative
abundance of individual absorbing species, but shifts in the
position and width of peaks will also manifest as peaks or
troughs. Moreover, in such complex samples, the total number
of absorption bands in the raw spectra is very large, and most
overlap one another. It is therefore difficult to assign features
in Figure 1b-e to individual chemical components. This
difficulty is compounded by the sparse and incomplete literature
on spectral assignment of edible oils. The majority of the
features are probably caused by compositional differences in
fatty acids, as they are present in relatively large amounts and
their proportions are affected by sample origin and cultivar (6,
12, 13). The main fatty acids in olive oils are oleic, palmitic,
and linoleic; these compounds exhibit discernibly different
infrared spectra (see, for example, the SDBSWeb library at
http://www.aist.go.jp/RIODB/SDBS/).

Figure 2 shows an expansion of the 900-1150 cm-1 region
in the centered data belonging to group 3 (Portuguese). These
data arise from duplicate spectra of eight different samples. The
figure shows that pairs of duplicate spectra are very similar,
irrespective of the time interval between acquisitionssduplicates
collected, for example, 4 days apart are no better matched than
those separated by 4 weeks. This suggests that neither instru-
mental drift nor changes in the sample over the time scales
concerned have had a serious negative impact upon the
measurement repeatability. We believe, however, that to obtain
this degree of repeatability, careful and painstaking spectral
acquisition is essential, in view of the very small spectral
differences that are of interest here. Preliminary and parallel
studies (to be published elsewhere) using different instrumenta-

Figure 1. (a) Raw spectral data; (b−e) centered data set, shown separately
for each of the four groups.

Figure 2. Expansion of the 900−1150 cm-1 spectral region for the centered data in group 3.
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tion (spectrometer, crystal material) and protocols (cleaning
regime) have shown that experimental and instrumental condi-
tions impact substantially both spectral quality and repeatability.

Multivariate analyses were carried out to determine whether
the different groups of data could be systematically distin-
guished, beginning with the PLS-LDA procedure. The clas-
sification success rate (summarized across the test items) is
shown vs the number of PLS factors used inFigure 3. There is
a clear first optimum at eight PLS factors, at which the cross-
validation success rate is∼96% (115 out of 120 samples
correctly classified). This is an encouraging performance for a
method aiming to offer a rapid screen (rather than a diagnostic
test).Figure 4agraphically represents the classification model,
showing the first vs second CV scores from a cross-validated
PLS-CVA using eight PLS factors. It is interesting to note that
in this model, the Spanish and Portuguese groups are closest
together. This may be a reflection of their neighboring geo-
graphical locations and consequent similarity in climate or other
environmental conditions or of greater genetic similarity between
the groups (some cultivars are represented in both). We note
that for olive oils, distinguishing the country of origin simul-
taneously amounts to distinguishing between groups of cultivars,
due to the regional differences in the varieties that are cultivated.

In whole spectrum methods, attempts are often made to
interpret the “loadings”: the vectors used in the various linear
transformations, which can sometimes offer information on the
nature of the biochemical factors that are varying in the samples.
Understanding the biochemical basis of any discrimination
would be interesting, although not essential for an effective
screening methodsit could be argued that “black box” tech-
niques are harder to defraud. In the PLS-CVA procedure,
successive linear transformations relate the data in a matrixX
through to the canonical variate scores,T. Considering the vector
of first CV scorest1, we can write:

in which Zr is an (n × r) matrix of PLS scores,q1 is the first
CV loading vector,Pr is a (d × r) matrix of PLS loadings,w1

is the vector of weights that relatet1 directly to X, and d )
570,n ) 120, and in the optimum model,r ) 8. FromFigure
4a, the projections of the data ontow1 effectively discriminate
group 2 (Italian) from other oils.Figure 4b compares the vector
w1 with the means of the four groups of data calculated from
the centered data shown inFigure 1b-e. Unfortunately, there

is no simple interpretation of the weight vector in terms of
feature assignments, although it appears to reflect several of
the features present in the group means.

The variate selection approach was implemented. The GA
aimed to identify a subset of raw variates that produce maximum
cross-validation success rate in LDA. A subset size of eight
was elected, due to the finding from the PLS-LDA analysis
that eight factors were needed for an optimal model. Because
the initial chromosomes are random and the nature of the
problem suggests that there may be many local optima, which
hinder convergence, the GA was executed 1000 times. The

Figure 3. Number of classification successes (summed over the test
segments) vs the number of PLS factors used in the PLS−LDA method.

t1 ) Zr q1 ) X Pr q1 ) X w1

Figure 4. (a) First vs second CV scores from the PLS−CVA method
(based on eight PLS factors). (b) First composite weight vector w1 (relating
first CV dimension to raw data) shown above the mean of each group
(calculated from centered data set).
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maximum cross-validation success rate obtained was 100%s
all 120 samples correctly classified. Furthermore, different
subsets of variates were equally able to produce this success
rate: of the 1000 executions, 100% was obtained on 94
occasions, from 84 unique subsets. The large majority of the
remaining executions converged on local optima yielding 118
or 119 successes. It is possible that further unique subsets
yielding a 100% success rate could be identified with more
repetitions of the GA or if the GA was refined to improve the
search efficiency.

Figure 5a shows a histogram depicting the frequency of
occurrence of each variate across all 1000 solutions. The
histogram can be considered as a “pseudo-loading”, with
spectral-like features. Inspection of the solutions showed that
the vast majority comprised representative variates from across
several of these bands (rather than several from within one
band). The largest features are peak-picked and labeled with
the corresponding spectral frequency; we believe that these
represent successively the most useful variates. Subsets of from
1 to all 12 of these variates were passed to the cross-validated
LDA routine and ranked in order of their occurrence frequency,
largest to smallest. The success rate as a function of the number
of variates used is shown inFigure 5b. From comparison with
Figure 3, it is clear that the selected variate approach has
performed far better than PLS-LDA. A 100% success rate was
achieved from a subset of eight variates and a∼98% success
rate (117 correct assignments) using just four variatessboth
exceeding that achieved by PLS-LDA. This is a very substantial
reduction in complexity as compared with the whole spectrum
method. In principle, parsimonious models are desirable because
they are more likely to be robust and transferable, for example,
between spectrometers; this premise will be tested in work
currently being planned.

Figure 6 compares the frequency positions of the eight
highest-ranked variates (as identified on the histogram) with
the mean of each group, again calculated from the centered data.
Once more, it is difficult to relate the individual variates to

features present in the centered data, with the exception of the
969 cm-1 variate, which corresponds to a peak in the group 1
data (Greek) that is absent from the remaining groups. It seems,
then, that neither the GA-LDA nor the PLS-LDA approach
is able to provide significant insight, in biochemical terms, into
the basis of the discriminatory models. The GA-LDA method,
however, was much better at distinguishing between the groups
of data. In conclusion, infrared spectroscopy combined with
multivariate analysis has the potential to act as a black box
screening technique, to verify the country of origin of extra
virgin olive oils.

Figure 5. (a) Histogram showing frequency of occurrence of each variate within the 1000 GA solutions. (b) Number of classification successes (summed
over the test segments) vs number of raw variates used. The spectral frequencies of the variates used are also given.

Figure 6. Subset of eight variates producing a 100% success rate,
indicated by the vertical dashed lines, superposed upon the mean of each
group (calculated from centered data set).
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